Discrepancy of higher rank polynomial lattice point sets

نویسندگان

  • Julia Greslehner
  • Friedrich Pillichshammer
چکیده

Polynomial lattice point sets (PLPSs) (of rank 1) are special constructions of finite point sets which may have outstanding equidistribution properties. Such point sets are usually required as nodes in quasi-Monte Carlo rules. Any PLPS is a special instance of a (t,m, s)-net in base b as introduced by Niederreiter. In this paper we generalize PLPSs of rank 1 to what we call then PLPSs of rank r and analyze their equidistribution properties in terms of the quality parameter t and the (weighted) star discrepancy. We show the existence of PLPSs of “good” quality with respect to these quality measures. In case of the (weighted) star discrepancy such PLPSs can be constructed component-by-component wise. All results are for PLPSs in prime power base b. Therefore, we also generalize results for PLPSs of rank 1 that were only known for prime bases so far.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions of general polynomial lattice rules based on the weighted star discrepancy

In this paper we study construction algorithms for polynomial lattice rules over arbitrary polynomials. Polynomial lattice rules are a special class of digital nets which yield well distributed point sets in the unit cube for numerical integration. Niederreiter obtained an existence result for polynomial lattice rules over arbitrary polynomials for which the underlying point set has a small sta...

متن کامل

Construction algorithms for higher order polynomial lattice rules

Higher order polynomial lattice point sets are special types of digital higher order nets which are known to achieve almost optimal convergence rates when used in a quasi-Monte Carlo algorithm to approximate high-dimensional integrals over the unit cube. Recently it has been shown that higher order polynomial lattice point sets of “good” quality must exist. However, it was not shown how to cons...

متن کامل

Component-by-component construction of hybrid point sets based on Hammersley and lattice point sets

In a series of recent articles, such as, e.g., [5, 9, 16, 22], point sets mixed from integration node sets in different sorts of quasi-Monte Carlo rules have been studied. In particular, a finite version, based on Hammersley and lattice point sets, was introduced in [16], where the existence of such hybrid point sets with low star discrepancy was shown. However, up to now it has remained an ope...

متن کامل

A New Distribution Family Constructed by Fractional Polynomial Rank Transmutation

In this study‎, ‎a new polynomial rank transmutation is proposed with the help of‎ ‎ the idea of quadratic rank transmutation mapping (QRTM)‎. ‎This polynomial rank‎ ‎ transmutation is allowed to extend the range of the transmutation parameter from‎ ‎  [-1,1] to [-1,k]‎‎. ‎At this point‎, ‎the generated distributions gain more&lrm...

متن کامل

Directional Discrepancy in Two Dimensions

In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Monte Carlo Meth. and Appl.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012